
Building a Reliable Structured and Trusted Distributed Database
on Top of Existing P2P Networks

Michael Steil<steil@in.tum.de>, Christian Hessmann<hessmann@in.tum.de>

May 23, 2004

Abstract

Existing peer-to-peer networks suffer from three
main problems: no structure, bad quality of data,
bad performance. This article describes a system
that solves these problems by introducing a layer
on top of existing P2P networks: A link database
in the form of a distributed tree of index files is
used, each index file being maintained by a differ-
ent person. These index files are time stamped and
signed, and stored in the P2P network.

1 Motivation

Existing peer-to-peer (P2P) networks like the
eDonkey/eMule, SoulSeek or Gnutella network
suffer from these three main problems:

1. no structure

2. bad quality of data

3. bad performance

There is no structure in the network. The
database consists of a flat list of files. There are
no directories to mark files that belong together, so
the only way of structuring is to use archives that
contain the separate files. No structure also means
that the user has no way to browse the network, to
see what is ”hot” or what is related. All there is, is
filename search functionality.

There is no system of trust. The user cannot tell
whether a file comes from a trusted source or is

broken, or has even been tampered with. Viruses,
worms and trojans easily spread on these networks.
What is even worse, is that there is no way to re-
move these broken files. As long as a filename is
attractive to users, the file will be downloaded - and
be shared. Because of all this, the BitTorrent net-
work doesn’t even have a way to search files in the
network; it relies on external databases.

The former two problems lead to a third prob-
lem: bad performance. A lot of data is shared in
the form of archives, so that files that belong to-
gether can be easily downloaded. For the data to
be useful, users are forced to unarchive them. The
original archive is often deleted afterwards, which
has the effect that it won’t be shared any more. The
individual files will be shared instead, which does
not improve the availability of the archive. Since
there is no way to find out the correct version of a
file, broken versions and fakes spread equally well.
So the availability of correct files is a lot lower than
it could be, if everyone had and shared the correct
files. Bad availability of data leads to a bad perfor-
mance.

2 Introduction

All these problems can be fixed, without requiring
a new network infrastructure. It can be fixed on top
of existing P2P networks. The proposed system
needs an underlying peer-to-peer network with the
following functionality:

• There is a search function that takes parts of

1



the filename as a parameter and returns a list
of full filenames and their unique IDs in the
network.

• Files are downloaded by their unique ID.
Unique IDs depend on the file contents, not
the filename.

In the eDonkey/eMule network, the unique IDs
would be the ”ed2k” link that consists of the file
size and an MD4 hash of the file contents (as well
as the filename, which is not necessary for down-
loading).

The basic idea of the new system is a database
with a single table. Every row contains various
fields that describe the file, as well as the unique
ID of (i.e. the link to) the file in the underlying
P2P network. So far, this is nothing special. There
are many external indexing systems for common
P2P networks, i.e. moderated websites that collect
links to known-good files that can be downloaded
off the P2P network.

But in this case, the database is distributed. The
database is split into many ”index” files (”nodes”)
that form a tree together. Every node is typi-
cally maintained by a different person and con-
tains, among other things, the table description (i.e.
the column headings of the fields of all rows), as
well as optionally rows that are links to data files
(as described above) and optionally links to more
index files.

Now this sounds like a moderated link database
with many moderators. But this system stores all
index files in the P2P network. Some additional
techniques and algorithms are needed so that au-
thenticity can be verified, and files can be updated:
All links to child nodes include the PGP public key
of the author of the child node. The author’s public
key fingerprint and the creation time of every in-
dex file is stored in the name of the index file, and
the filename and the hash of the file contents are
signed, and the signature is added to the filename.
Some further techniques are applied to ensure the
authenticity of the node, as well as that the author

of the linked node agrees with being linked from a
certain node, to prevent a takeover of the tree.

This leads to a ”tree of trust”: Less depth leads
to higher trust - and the quality of data close to the
root is usually higher.

3 Index files

Index files in the P2P network are located using
their names, so all index files have a certain struc-
ture:

P2PTOTvv fff[...]fff yyyy-mm-dd-r
sss[...]sss.txt.gz

vv is the version number of the protocol. This
will be ”01” for the first version.fff[...]fff
is the public key fingerprint of the author of this
node, with spaces omitted.yyyy-mm-dd is the
date of the file.r is the revision of the file on this
date. sss[...]sss is the public key signature
(prologue/epilogue and newlines omitted).

The PGP signature is applied to the concatena-
tion of the filename (up to and including the revi-
sion field) and the unique ID of the file (i.e. the
hash of the file).

All index files are ASCII CSV (comma sepa-
rated value) files that have been gzip-compressed.
Optionally, index files can be PGP-encrypted using
the author’s private key, i.e. they can be decrypted
using the known public-key. In this case, the file-
name ends with .gpg instead of .gz, and the file
does not get compressed with gzip before encryp-
tion.

The CSV fields are comma-separated, and all
fields are in quotes. The contents of all fields are
in C style, i.e. quotes are escaped using\ and con-
structs like\n work as expected. Lines beginning
with # are comments.

The first field in every row is"K" (key), "H"
(header),"F" (file) or "L" (link). There is always
exactly one ”K” row in the file. It contains the pub-
lic key of the author of the node in PGP format as
the second, and a comment as the third field. If
the file contains any ”file” rows, then there is ex-

2



actly one header in the file (before any ”file” row),
which contains the column headings for the ”file”
rows. The second field (after the"H" ) contains the
name of the the P2P system, and there needs to be
at least one column with the name ”Title”. There
can be any number (including 0) of file rows in the
index file that form a part of the database. They
have as many fields as the header. The second field
(after the"F" ) of every row is the unique ID of the
file in the P2P network.

There can be any number (including 0) of link
rows. Every row links to a child index file. These
rows look like this:

"L","kkk[...]kkkk",
"sss[...]sss"

kkk[...]kkk is the child user’s public key,
in PGP format. sss[...]sss is the signature
of the (spaces omitted version of the) parent fin-
gerprint, signed by the child (or empty) in PGP
format (gpg –clearsign; parent fingerprint replaced
with %safterwards). Newline characters have been
replaced with\n.

4 Algorithms

A single index file can be retrieved by searching
for P2PTOTvv fff[...]fff yyyy-mm
in the P2P network.fff[...]fff is the fin-
gerprint of the author of the node, andyyyy-mm
is the current year and month. The P2P network
will return all revisions of this file of this month, if
any, and possibly some fake files. The file with the
highest date/revision and the signature intact will
be downloaded. The signature can be easily veri-
fied, as the P2P client also returns the unique ID of
the search results.

If no file is found, then there is probably no ver-
sion from this month. Using the month before as
the date, it must be tried again, until an intact file
is found or a certain date is met.

All downloaded files are supposed to be shared
in the network again, so that the index spreads
well.

To begin with, the client needs the public key
of the author of the root index from an external
source. It fetches the root index and all linked files
recursively. Circles must be detected; the client
must stop at that point.

If the client is in ”strict” mode, only index files
are accepted, if the signature entry in the link row
contains a valid signature of the parent’s finger-
print, signed by the child. This verifies that the
child’s author agrees with being linked by this
node.1 In addition, the public key in the ”K” row is
compared with the public key of the child as stated
in the parent’s link. If not in strict mode, none of
these checks will be made.

If the child index file has an incompatible header
row, this is fine. Usually, a database should have
identical headers in all nodes, but this makes it pos-
sible to combine different databases with a very
different structure. If not all index files can be
found, the database is incomplete, but still func-
tional. In fact, it is functional right after the first
”file” row is loaded.

The client always has the complete and current
index, so searching can be done offline. Every
query results in a CSV row, which includes the
unique ID of the file in the P2P network. The user
can then choose to download files from the search
results.

5 Tree of Trust

For any database in this system, there needs to be
a root authority that can add any number of trusted
users to its root index file. All these users can, in
turn, add any number of trusted users to their in-
dex files. Every link from a parent to a child in one
way needs a signature from the child to the parent
of the parent’s fingerprint for the children to be rec-
ognized in ”strict” mode. The contents of a single
index file need not to be of a certain subtopic of the

1An alternative would be to make the child link back to the
parent, but this way, the child can accept additional parents
without updating its node.

3



database, the position in the tree is independent of
the subtopic of the index file.

As trust cannot be strictly transitive (which is
actually a good thing in this case), quality of data
usually degrades at lower levels of the tree, but the
number of users and the amount of data rises. The
depth in the tree is equivalent to the trust level and
can be used as an indicator for the quality of the
data. In practice, this means that searches can op-
tionally stop at a certain depth, or, if duplicate en-
tries are found, the client can hide all entries other
than the one with the highest trust level.

Good data can propagate up in the list, as the
parent node can copy rows from children. Even
users on other branches in the tree can copy entries
from other lists with lower trust levels into their
index file if the data is of high quality.

A maintainer of an index file can easily update
it: After the file contents have been changed, the
date and revision in the filename must be updated,
and the filename and the unique ID (hash) must be
signed again. The resulting file must be added to
the P2P network.

Of course tools for converting existing structures
like directories or files into the index file format as
well as frontends for editing index files and their
filenames are badly needed.

This tree conforms a social structure. The root
index author starts a database, defines the structure
and the rules of it and appoints children to help
him/her. Every parent is only responsible for their
children, not for the complete tree below. If a child
disappoint a parent, e.g. by posting data of bad
quality, the link can easily be removed. Even the
an author is disappointed with a level that is not di-
rectly below, he/she can ask the child whose sub-
tree contains the data to resolve the issue - possibly
recursively. If this is not possible, the whole sub-
tree can be dropped.

If a person decides to participate in a database, it
is as easy as asking any node whether it accepts an-
other child. The comment field in every index file
can contain a message stating whether or not email
contact with potential children is wanted. Usually

it is not for nodes of high trust levels. New contrib-
utors are supposed to start at the bottom, and can
be handed up level by level, by asking tha parent’s
parent. As there are usually many leaf nodes, find-
ing a parent should not be hard. The tree should
automatically remain balaced, because new con-
tributors will typically search for leaf nodes with
the highest trust levels.

6 Splitting and Linking

Since the root index file is no different than any
other index file, the tree can be split anywhere. If
subtrees specialize on a certain topic, or a subtree
tends to contain higher quality data than the com-
plete tree (regarding the quality per trust level ra-
tio), this procedure makes sense. The trust level
for the data just below the new root is higher, but
some data might be missing.

A lower level of a subtree can link to the root of
the containing tree, so that all files can be reached
through this subtree. The client must detect the
circle and stop there. This way, the trust levels can
be resorted.

If different groups have been working on dif-
ferent databases on the same subject, but with the
same format (i.e. ”H” header rows), these can be
easily linked by creating a new master index that
links to the two former root index files. These will
also remain independent databases. For the new
database to be compatible with ”strict” mode, the
new root’s maintainer must get his/her fingerprint
signed by all children and add the signature to the
links.

Databases with different headers can be linked
just as well. All ”file” rows contain at least the link
to the file as well as the field ”Title”. Searching
for contents of specific fields in a database like this
might only return results of one child database, but
searches in the ”Title” field always takes all child
databases into account. Alternatively, all index
files of one database can be rewritten to match the
format of the other. All index files of one database

4



will have to be updated, but all the ”payload” files
will remain the same, so this requires little new
amount of data in the network.

7 Potential Problems

In practice, it will happen that the maintainer of a
node stops updating his/her node or that the private
key for a node is lost (”dead node”). This is no
problem, because the node can be replaced by a
new one:

• The maintainer of the parent node of the dead
node changes the link that pointed to the dead
node and to the new public key and replaces
the signature with one signed by the (new)
maintainer.

• The (new) maintainer of the formerly dead
node starts with the contents of the old index
file.

• The (new) maintainer gets his/her name
signed by all children of the dead node and re-
place the fields in the index file with the new
signatures. Public keys as stored in the links
of the dead node usually contain the email ad-
dresses of the owners, so it should be possible
to reach all children, or else the child is dead
as well.

• The filename of the new node must be fixed to
include the new fingerprint and the filename
and the unique ID (hash) must be signed.

Another problem can be carelessness of an au-
thor: Usually, maintainers of index files do not
only extend their files with new content, but also
replace links to point to files with the same content
but with higher quality. The problem can arise that
the new files are not distributed well - but the old
files are.

In this case, the client can always go back in
time and check for the same data in older versions
of the index tree (which can be easily retrieved)

and get the old version. This functionality can be
implemented into the client and either issued auto-
matically, or manually by the user.

The whole tree in general can be quite volatile.
Any maintainer of a node can easily delete the
complete tree below by updating his index file
with an empty file. Even the root index file can
be changed this way and disable the complete
database. This power is actually intentional, but
the maintainer of the root index file can also break
the complete database unintentionally.

A simple workaround on the client side would
be to use an older version of the tree. Clients could
also use older versions of specific nodes, if the
latest version is obviously broken (parse error, no
links in the root index file, ...)

But there are also intentional attacks on this sys-
tem. Fingerprint collisions are very unlikely. An
attacker can publish an index file with the same
public key of an important node, but with a broken
signature. The client can easily find out whether
this file is valid without fetching it. Though, it
increases bandwidth for searches and slows down
verification of filename/unique id pairs. Adding
many fake files to the P2P network that look like
the root of a popular database (but of course have
no valid signature) can be seen as the Denial-of-
Service attack of this system.

Another attack on the system would be to take
over a database by replacing the root node with a
new one that contains the same data, but is main-
tained by a differnet person with a different key-
pair, and publishing a link to this database exter-
nally to attract as many users as possible. This
is unwanted, as this new user could take over the
complete social network the original root author
built. It is okay though to flatten the complete tree
and publish it independently. This way the new
database won’t be updated automatically in paral-
lel with the original one. The idea is similar to con-
ventions in Open Source development: It is okay to
”steal” code (copy links from one database to an-
other), it is okay to fork a project (flatten the tree
and create a new database), but it is not okay to

5



take over the project lead (take over the root node).
The system already addresses this potential prob-
lem: All children must sign the fingerprint of the
parent, and the parent must include this signature
in the link to the child. A new root would have
to get all signatures of the old root’s children, as
described above.

8 More Effects

A positive effect of this system is that if it spreads
and is used by many people, even the underlying
network gets better, that is, even for users that don’t
use this system.

All users of this system spread only files that
are linked by the database. If the percentage of
this people among the users of the underlying P2P
network is significant, then important and verified
files will be better distributed, and fakes and bro-
ken files will be a lot worse distributed. This makes
the quality of the complete system better, and also
improves the performance of the P2P network, as
less bandwidth is wasted with fakes and broken
files.

9 Further thoughts

The features of a filesystem tree can be seen as a
subset of those of a database table. A table can be
sorted by any column, while a file system is static.
A table with a fixed order of columns is equivalent
with a filesystem tree.

This way, a database in this system can repre-
sent any filesystem tree. The ”Title” field would
contain the filename, and the other fields would
contain the directory names of the first level, the
second level and so on. This way, the system can
be used for maintaining a website that lives in the
P2P network. A special proxy would have to con-
vert this system into HTTP. A website like this has
no problems with heavy load, cannot be DOS at-
tacked, and includes a sophisticated system of edit
permissions.

If the P2P network is used locally, on a big num-
ber of machines, this system can be used as a dis-
tributed, fault tolerant filesystem with built-in his-
tory functionality. Performance can be increased
simply by adding more machines, the fauilure of
machines is not critical, changes to the complete
filesystem can be atomic (by releasing a new ver-
sion of the root index), old versions of the complete
database can still be retrieved, and updates are au-
thorized via public key cryptography.

10 Conclusion

The suggested system is supposed to solve com-
mon problems of peer-to-peer networks and im-
prove their overall data quality by using a dis-
tributed index stored in the P2P network that is
maintained by different people. As it builds on top
of an existing P2P network, and the protocols and
file formats are relatively easy, this solution should
be relatively easy to implement, and the resulting
application is supposed to be relatively small.

We are working on a proof-of-concept imple-
mentation of this system, built on top of the
eDonkey/eMule network in the Perl program-
ming language. This project can be found at:
http://tot.sourceforge.net/ .

6


